Learning Natural Language Inference using Bidirectional LSTM model and Inner-Attention
نویسندگان
چکیده
In this paper, we proposed a sentence encoding-based model for recognizing text entailment. In our approach, the encoding of sentence is a two-stage process. Firstly, average pooling was used over word-level bidirectional LSTM (biLSTM) to generate a firststage sentence representation. Secondly, attention mechanism was employed to replace average pooling on the same sentence for better representations. Instead of using target sentence to attend words in source sentence, we utilized the sentence’s first-stage representation to attend words appeared in itself, which is called ”Inner-Attention” in our paper . Experiments conducted on Stanford Natural Language Inference (SNLI) Corpus has proved the effectiveness of ”Inner-Attention” mechanism. With less number of parameters, our model outperformed the existing best sentence encoding-based approach by a large margin.
منابع مشابه
Learning Natural Language Inference with LSTM
Natural language inference (NLI) is a fundamentally important task in natural language processing that has many applications. The recently released Stanford Natural Language Inference (SNLI) corpus has made it possible to develop and evaluate learning-centered methods such as deep neural networks for natural language inference (NLI). In this paper, we propose a special long short-term memory (L...
متن کاملDR-BiLSTM: Dependent Reading Bidirectional LSTM for Natural Language Inference
We present a novel deep learning architecture to address the natural language inference (NLI) task. Existing approaches mostly rely on simple reading mechanisms for independent encoding of the premise and hypothesis. Instead, we propose a novel dependent reading bidirectional LSTM network (DR-BiLSTM) to efficiently model the relationship between a premise and a hypothesis during encoding and in...
متن کاملThe RepEval 2017 Shared Task: Multi-Genre Natural Language Inference with Sentence Representations
This paper presents the results of the RepEval 2017 Shared Task, which evaluated neural network sentence representation learning models on the MultiGenre Natural Language Inference corpus (MultiNLI) recently introduced by Williams et al. (2017). All of the five participating teams beat the bidirectional LSTM (BiLSTM) and continuous bag of words baselines reported in Williams et al.. The best si...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملA Neural Architecture Mimicking Humans End-to-End for Natural Language Inference
In this work we use the recent advances in representation learning to propose a neural architecture for the problem of natural language inference. Our approach is aligned to mimic how a human does the natural language inference process given two statements. The model uses variants of Long Short Term Memory (LSTM), attention mechanism and composable neural networks, to carry out the task. Each p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.09090 شماره
صفحات -
تاریخ انتشار 2016